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Abstract
The stability of a planar, two-component, charged lipid bilayer with respect to
lateral phase separation is analysed. Particular focus is put on the influence
of electrostatic coupling between the two apposed monolayers. We describe
the membrane on the mean-field level by a lattice gas model, supplemented
by the Poisson–Boltzmann theory for electrostatic interactions. The spinodal
line is calculated analytically for a symmetric membrane. We demonstrate that
the critical non-ideality parameter decreases with the extent of electrostatic
coupling across the bilayer. In the limit of strong coupling it approaches the
value of an uncharged membrane.

1. Introduction

Stability of multi-component lipid membranes with respect to lateral demixing plays an
important role in biological systems where a multitude of cellular processes (like cell adhesion,
transport, signalling) are influenced by the physical properties of the membrane. Fluid-
like model membranes are known to exhibit non-ideal mixing behaviour [1] which may
lead spontaneously to the formation and coexistence of lateral phases of different lipid
composition [2]. Electrostatic interactions are among the key factors that determine the
mixing properties of lipids in charged membranes. Previous calculations concerning the
stability of binary charged lipid monolayers reveal the stabilizing role of the electrostatic
repulsion between similarly charged lipids. That is, the spinodal line is shifted up to higher
temperatures [3]. Interestingly, additionally adsorbed macroions that interact electrostatically
with lipid monolayers are able to decrease the membrane stability, even beyond the level of
neutral membranes [4].

In the present work we investigate the stability of a membrane modelled as a two-
component lipid bilayer and we focus on the effects imposed by the electrostatic coupling
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Figure 1. Schematic representation of the electrostatic potential for the charged bilayer. The
head group regions of the two monolayers (indexed ‘1’ and ‘2’) are located at x = d and 0; the
(dimensionless) electrostatic potential is denoted by ψ1(x) for x � d, ψL(x) for 0 � x � d,
and ψ2(x) for x � 0. The surface charge densities are σ1 and σ2 and the corresponding surface
potentials �1 = ψ1(d) = ψL(d) and �2 = ψ2(0) = ψL(0). The dielectric constants in the
aqueous regions (x < 0 and x > d) and within the membrane interior (0 < x < d; shaded region)
are εW and εL, respectively.

between the two charged faces of the membrane. To this end, we separate the free energy of
the bilayer into non-electrostatic and electrostatic contributions. Both contributions are treated
on the mean-field level, the former using the lattice gas description of a binary fluid mixture
and the latter on the basis of non-linear Poisson–Boltzmann theory. We shall show that the
electrostatic coupling across the bilayer generally lowers the stability with respect to lateral
phase separation.

2. Free energy of a two-component, charged lipid bilayer

We consider a two-component lipid bilayer that consists of one negatively charged and one
neutral species. The membrane is assumed to be flat and is immersed in aqueous monovalent
salt solution characterized by Debye length lD = 1/κ and dielectric constant εW. Let us
label the two individual monolayers by the indices ‘1’ and ‘2’. The corresponding mole
fraction of charged lipids in each monolayer (further referred to as ‘composition’) is φ1 and
φ2. Assuming that all lipids—charged and uncharged ones—have the same cross-sectional area
a, the (negative) charge densities of the two monolayers can be expressed as σ1 = −φ1e/a and
σ2 = −φ2e/a where e is the elementary charge. The hydrophilic lipid head groups separate
the aqueous phase from the hydrophobic interior of the bilayer. We denote the corresponding
thickness of the hydrocarbon core by d and its dielectric constant by εL.

It is convenient to incorporate the constants e/kBT into the electrostatic potential � to
render it unitless through the definitionψ = e�/kBT (where kB is Boltzmann’s constant and T
is the absolute temperature). Due to the planar symmetry of the bilayer, the potentialψ = ψ(x)
will only be a function of the x-coordinate pointing normal to the membrane plane. Figure 1
shows a schematic cross-section through the bilayer and illustrates the principal behaviour of
the electrostatic potential.

In our expression for the overall free energy, F = N f (φ1, φ2)/2, of the membrane (note
that N/2 = N1 = N2 is the constant number of lipids in either one of the two monolayers) we
separate the electrostatic free energy contribution ( fel) from all non-electrostatic interactions
( fmix)

f (φ1, φ2) = fel(φ1, φ2) + fmix(φ1) + fmix(φ2). (1)

In the following we express all energies in units of kBT . The non-electrostatic contribution
to the free energy of the bilayer is modelled within the well-known mean-field treatment of
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regular solution theory [5]

fmix(φ) = φ ln φ + (1 − φ) ln(1 − φ) + χφ(1 − φ) (2)

which describes each monolayer as an incompressible binary fluid exhibiting only nearest
neighbour interactions. The first two terms of (2) represent the ideal mixing free energy,
whereas the last term takes the non-ideality of the mixture into account; χ is the non-ideality
parameter that measures the chemical mismatch between the two types of lipids. For χ > 0
attractive short-range interactions between lipids of the same species dominate. Above a critical
value χ > χc lateral phase separation occurs. In the absence of electrostatic interactions (2)
gives rise to χc = 2 and a corresponding critical composition φc = 1/2.

In order to calculate the electrostatic free energy we employ a charging process of the
two apposed monolayers. This requires only knowing how the membrane surface potentials,
�1 = �1(φ1, φ2) and �2 = �2(φ1, φ2), depend on the monolayer compositions φ1 and φ2.

fel(φ1, φ2) = −
∫ φ1

0
�1(φ̃1, 0) dφ̃1 −

∫ φ2

0
�2(φ1, φ̃2) dφ̃2. (3)

The particular form of (3) assumes first charging of the monolayer ‘1’ and then ‘2’, but the
final result for fel(φ1, φ2) does, of course, not depend on that order. According to Poisson–
Boltzmann theory, the electrostatic potentials ψ1 and ψ2 in the aqueous regions and ψL inside
the membrane satisfy the equations

ψ ′′
1 = κ2 sinhψ1, ψ ′′

2 = κ2 sinhψ2, ψ ′′
L = 0 (4)

where here and in the following the prime denotes the derivative with respect to x . The
corresponding boundary conditions at the head group regions of both monolayers read

ψ ′
1(d)− H dκψ ′

L(d) = 2κp0φ1

ψ ′
2(0)− H dκψ ′

L(0) = −2κp0φ2
(5)

where we have introduced the dimensionless constant p0 = 2πlBlD/a with lB = e2/4πkBT εW

being the Bjerrum length. The degree of electrostatic coupling between the two monolayers
is taken into account by the coupling parameter

H = εLlD

εWd
. (6)

The electrostatic potential vanishes at very large distances from the isolated membrane,
ψ1(x → ∞) = 0 and ψ2(x → −∞) = 0. Integration of (4) subject to these boundary
conditions yields the surface potentials

�1 = −2 arcsinh(p0φ̄1), �2 = −2 arcsinh(p0φ̄2) (7)

where the quantities φ̄1 = φ1 + H
�/2 p0 and φ̄2 = φ2 − H
�/2 p0 appear as effective
monolayer compositions; 
� = �1 − �2 is the potential difference across the membrane.
Insertion of the surface potentials into (3) results in the charging free energy

fel(φ1, φ2) = H

4 p0
(
�)2 + fml(φ̄1) + fml(φ̄2) (8)

which appears as the sum of three terms. The first one is the electrostatic energy of a planar
capacitor with potential difference
� = 
�(φ1, φ2) and lateral extension a. The remaining
two terms correspond to the charging free energies of two isolated monolayers with effective
compositions φ̄1 and φ̄2, respectively. Note that the well-known charging free energy [6, 7] of
a single monolayer of composition φ is

fml(φ) = 2φ

[
1 − q

p
+ ln(p + q)

]
(9)
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with p = p0φ and q = √
p2 + 1. The electrostatic coupling between the two monolayers is

contained in the two effective compositions φ̄1 and φ̄2 and also in the potential difference
�
that is the solution of the transcendental equation


�

2
= −arcsinh

(
p0φ1 +

H

2

�

)
+ arcsinh

(
p0φ2 − H

2

�

)
. (10)

If we artificially exclude any electric field inside the membrane (H = 0) the electrostatic free
energy of the bilayer, fel = fml(φ1) + fml(φ2), is the sum of the charging free energies of two
isolated monolayers of compositions φ1 and φ2. In the other limit (H → ∞) we find that
H
� = p0(φ2 − φ1) and thus fel(φ1, φ2) = 2 fml[(φ1 + φ2)/2].

3. Local stability analysis

The boundary of local stability with respect to lateral phase separation is conveniently described
by the spinodal line [5]. Since the lipid bilayer has two degrees of freedom (namely the two
compositions φ1 and φ2) the spinodal is determined by the solution for χ of the equation(

∂2 f

∂φ2
1

) (
∂2 f

∂φ2
2

)
−

(
∂2 f

∂φ1 ∂φ2

)2

= 0. (11)

The left-hand side of the last equation can be understood as the determinant of the stability
matrix ∂2 f/∂φi ∂φ j with i, j = 1, 2. We note that (11) accounts for the possibility that
the compositional changes upon phase separation in the two monolayers are coupled to each
other. On the other hand, vanishing of only a minor determinant of the stability matrix (either
∂2 f/∂φ2

1 = 0 or ∂2 f/∂φ2
2 = 0) does not include this degree of freedom. Hence (11) is the

relevant local stability criterion. We recall that the total free energy of the bilayer in (1) is a
sum of electrostatic and non-electrostatic terms. Inserting them into (11) yields(

1

φ1(1 − φ1)
+
∂2 fel

∂φ2
1

− 2χ

) (
1

φ2(1 − φ2)
+
∂2 fel

∂φ2
2

− 2χ

)
=

(
∂2 fel

∂φ1 ∂φ2

)2

(12)

which is a quadratic equation in χ . The smallest solution of (12) corresponds to the spinodal.
Based on (8) we calculate the first and second derivatives of fel(φ1, φ2); the results are
∂ fel/∂φ1 = f ′

ml(φ̄1) = −�1(φ̄1) and ∂ fel/∂φ2 = f ′
ml(φ̄2) = −�2(φ̄2) and

∂2 fel

∂φ2
1

= f ′′
ml(φ̄1) + H

2p0
f ′′
ml(φ̄1) f ′′

ml(φ̄2)

1 + H
2p0

[ f ′′
ml(φ̄1) + f ′′

ml(φ̄2)]

∂2 fel

∂φ2
2

= f ′′
ml(φ̄2) + H

2p0
f ′′
ml(φ̄1) f ′′

ml(φ̄2)

1 + H
2p0

[ f ′′
ml(φ̄1) + f ′′

ml(φ̄2)]

∂2 fel

∂φ1 ∂φ2
=

H
2p0

f ′′
ml(φ̄1) f ′′

ml(φ̄2)

1 + H
2p0

[ f ′′
ml(φ̄1) + f ′′

ml(φ̄2)]

(13)

where from (9) it follows that f ′
ml(φ) = 2 arcsinh(p0φ) and f ′′

ml(φ) = 2 p0/q . Insertion of (13)
into (12) together with the calculation of the effective compositions, φ̄1 and φ̄2 (see (10)),
allows us to determine the spinodal surface χ(φ1, φ2). Numerical minimization of χ(φ1, φ2)

gives rise to the critical non-ideality parameter χc and reveals that the corresponding critical
compositions, φc

1 = φc
2 = φc, are equal for all choices of p0 and H . The lower the value

of χc the more unstable is the membrane with respect to lateral phase separation. Figure 2
shows the dependence of χc and φc as a function of H for different values of p0. Increasing
values of the coupling parameter H shift down the critical point. The finding φc

1 = φc
2 = φc
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Figure 2. The critical non-ideality parameter, χc, and the corresponding critical compositions
φc

1 = φc
2 = φc, as a function of H for different values of p0. We obtained χc from a minimization

of the spinodal, χ(φ1, φ2); see (12). The dashed lines are located at χc = 2 +
√

3 (left) and
φc = (3 − √

3)/2 (right).

implies that minimization of the spinodal line χ(φ1 = φ2 = φ) is sufficient for the calculation
of χc. Indeed, this case corresponds to the particular but most relevant case of a symmetric
membrane (φ1 = φ2) for which we obtain the following explicit expression for the spinodal

χ = 1

2φ(1 − φ)
+

p0√
1 + p2

0φ
2 + 2H

. (14)

The first part on the right-hand side of (14) is the non-electrostatic contribution to the spinodal
line, whereas the second one describes the influence of electrostatic interactions.

The limit of high salt concentrations (p0 � 1) corresponds to the Debye–Hückel regime.
In this case, the spinodal χ = 1/(2φ(1 − φ)) + p0/(1 + 2H ) implies a critical composition
φc = 1/2 and a corresponding critical non-ideality parameter χc = 2 + p0/(1 + 2H ). For
sufficiently small Debye length, electrical charges on both sides of the bilayer are strongly
screened by the counterion clouds and the critical point is located close to that of an uncharged
membrane (χc → 2).

In the low salt concentration regime ( p0 � 1), (14) can be written as χ = 1/(2φ(1 −
φ)) + 1/(φ + 2H/p0). The non-ideality parameter χ is no longer a function of lD and εW

but only depends on the intrinsic bilayer properties through the ratio H/p0 = 2aεLkBT/e2d .
Compared to water the hydrophobic core of a lipid membrane has a low dielectric constant
(εL/εW ≈ 1/40) so that for not too high values of the Debye length the coupling constant
is small (H � p0). Series expansion with respect to H/p0 of the critical point results in
χc = (2 +

√
3)(1 − 4H/3 p0) and critical composition φc = (3 − √

3)/2 − 2(
√

3 − 1)H/3 p0.
Note that for an electrostatically decoupled bilayer (H = 0), the results recover the previously
derived [4] critical values χc = 2 +

√
3 and φc = (3 − √

3)/2; see figure 2. In fact, the latter
case is supposed to serve as a sufficiently accurate approximation for biological membranes
which are typically characterized by p0 ≈ 7 and H ≈ 0.01.

Generally, the presence of a non-vanishing coupling parameter decreases the stability
of a bilayer. In the hypothetical limit H → ∞ we always find χc = 2 and φc = 1/2,
characterizing the stability of an uncharged membrane. This finding is a manifestation of the
coupling between the lateral phase separation within the two monolayers. That is, local charge
accumulation within one monolayer correlates with a corresponding local charge depletion on
the other side of the membrane. In the limit of strong electrostatic coupling (H → ∞) the
two effects neutralize each other such that the membrane behaves as if it was uncharged.

To summarize, we demonstrate that electrostatic coupling across a two-component,
charged bilayer generally tends to lower the stability with respect to lateral phase separation.
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The use of mean-field theory does not permit quantitative prediction of the critical point, but
can be expected to capture correctly the qualitative influence of electrostatic coupling through
the membrane.
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